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ABSTRACT
In 1994 Karl Sims showed that computational evolution can
produce interesting morphologies that resemble natural or-
ganisms. Despite nearly two decades of work since, evolved
morphologies are not obviously more complex or natural,
and the field seems to have hit a complexity ceiling. One
hypothesis for the lack of increased complexity is that most
work, including Sims’, evolves morphologies composed of
rigid elements, such as solid cubes and cylinders, limiting
the design space. A second hypothesis is that the encod-
ings of previous work have been overly regular, not allow-
ing complex regularities with variation. Here we test both
hypotheses by evolving soft robots with multiple materials

and a powerful generative encoding called a compositional
pattern-producing network (CPPN). Robots are selected for
locomotion speed. We find that CPPNs evolve faster robots
than a direct encoding and that the CPPN morphologies
appear more natural. We also find that locomotion per-
formance increases as more materials are added, that di-
versity of form and behavior can be increased with di↵er-
ent cost functions without stifling performance, and that
organisms can be evolved at di↵erent levels of resolution.
These findings suggest the ability of generative soft-voxel
systems to scale towards evolving a large diversity of com-
plex, natural, multi-material creatures. Our results suggest
that future work that combines the evolution of CPPN-
encoded soft, multi-material robots with modern diversity-
encouraging techniques could finally enable the creation of
creatures far more complex and interesting than those pro-
duced by Sims nearly twenty years ago.

Categories and Subject Descriptors: I.2.11
[Distributed Artificial Intelligence]:Intelligent Agents

General Terms: Algorithms, Design, Experimentation

Keywords: Genetic Algorithms, Generative Encodings, CPPN-
NEAT, Soft-Robotics, HyperNEAT, Evolving Morphologies
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Figure 1: An example of a natural looking morphol-
ogy and behavior evolved by combining a generative
encoding with voxel-resolution soft, actuatable ma-
terials. The soft robot gallops from left to right
across the image with a dog-like gait.

1. INTRODUCTION
In 1994, Karl Sims’ evolved virtual creatures showed the

potential of evolutionary algorithms to produce natural, com-
plex morphologies and behaviors [30]. One might assume
that nearly 20 years of improvements in computational speed
and evolutionary algorithms would produce far more impres-
sive organisms, yet the creatures evolved in the field of ar-
tificial life today are not obviously more complex, natural,
or intelligent. Fig. 2 demonstrates an example of similar
complexity in robots evolved 17 years apart.

One hypothesis for why there has not been a clear in-
crease in evolved complexity is that most studies follow Sims
in evolving morphologies with a limited set of rigid ele-
ments [21, 4, 3, 16, 22]. Nature, in contrast, composes or-
ganisms with a vast array of di↵erent materials, from soft
tissue to hard bone, and uses these materials to create sub-
components of arbitrary shapes. The ability to construct
morphologies with heterogeneous materials enables nature
to produce more complex, agile, high-performing bodies [35].
An open question is whether computational evolution will
produce more natural, complex forms if it is able to create

Figure 2: (left) The scale and resolution of robots
evolved by Sims in 1994 [30]. (middle) The scale and
resolution at which evolutionary robotics commonly
occurs today (from Lehman and Stanley, 2011 [21]).
(right) The scale and resolution of robot fabrication
techniques (from Lipson and Pollack, 2000 [22]).



organisms out of many material types. Here we test that
hypothesis by evolving morphologies composed of voxels of
di↵erent materials. They can be hard or soft, analogous to
bone or soft tissue, and inert or expandable, analogous to
supportive tissue or muscle. Contiguous patches of homoge-
neous voxels can be thought of as di↵erent tissue structures.

Another hypothesis is that the encodings used in previ-
ous work limited the design space. Direct encodings lack
the regularity and evolvability necessary to consistently pro-
duce regular morphologies and coordinated behaviors [9, 6,
34, 16], and overly regular indirect encodings constrict the
design space by disallowing complex regularities with varia-
tion [16, 31, 34]. We test this hypothesis by evolving mor-
phologies with the CPPN-NEAT encoding [31], which has
been shown to create complex regularities such as symme-
try and repetition, both with and without variation (Fig. 3).
CPPN-NEAT has shown these abilities in 2D images [29] and
3D objects [7] and morphologies [4]. To test the impact of
the CPPN encoding, we compare it to a direct encoding.

Overall, we find that evolution does utilize additional ma-
terials made available to it; their availability led to a signif-
icant amount of diverse, interesting, complex morphologies
and locomotion behaviors without hindering performance.
Furthermore, the generative encoding produced regular pat-
terns of voxel ‘tissue’, leading to fast, e↵ective locomotion.
In contrast, the direct encoding produced no phenotypic reg-
ularity and led to poor performance.

Because it is notoriously di�cult to quantify attributes
such as “impressiveness” and “complexity”, we make no ef-
fort to do so here. Instead, we attempt to visually represent
the interesting diversity of morphologies and behaviors that
evolved once evolution was provided with more materials
and a sophisticated encoding. We also demonstrate the abil-
ity for this system to scale to higher resolutions and greater
material diversity without hindering performance. Finally,
we investigate the e↵ects of di↵erent fitness functions, reveal-
ing that evolution with this encoding and material palette
can create di↵erent bodies and behaviors in response to dif-
ferent environmental and selective pressures.

2. BACKGROUND
There are many Evolutionary Robotics papers with rigid-

body robots [25]. However, few attempts have been made to
evolve robots composed of soft materials [27], and most of
those attempts are limited to only a few components. This
paucity is due largely to the computational costs of simulat-
ing flexible materials and because many genetic encodings
do not scale to large parameter spaces [5, 18].

The CPPN encoding abstracts how developmental biology
builds natural complexity, and has been shown to produce
complex, natural-appearing images and objects (Fig. 3) [29,
7, 31]. Auerbach and Bongard used this generative encoding
to evolve robotic structures at finer resolutions than previous
work. The systems evolved demonstrated the ability to take
advantage of geometric coordinates to inform the evolution
of complex bodies. However, this work was limited to rigid
building blocks which were actuated by a large number of
hinge joints [1, 4, 3], or had no actuation at all [2].

Rigid structures limit the ability of robots to interact with
their environments, especially when compared to the com-
plex movements of structures in biology composed of mus-
cle and connective tissue. These structures, called muscular
hydrostats, often display incredible flexibility and strength;

Figure 3: (left) Examples of high resolution, com-
plex, natural-looking images evolved with CPPN-
NEAT that contain symmetry, repetition, and in-
teresting variation [29]. (right) Examples of CPPN-
encoded 3D shapes with these same properties [7]).

examples from biology include octopus arms or elephant
trunks [35]. While soft robots can be designed that provide
outstanding mobility, strength and reliability, the design
process is complicated by multiple competing and di�cult-
to-define objectives [35]. Evolutionary algorithms excel at
such problems, but have historically not been able to scale
to larger robotic designs. To demonstrate that evolution
can design complex, soft-bodied robots, Hiller and Lipson
created a soft-voxel simulator (called VoxCAD) [11]. They
showed a preliminary result that CPPNs can produce inter-
esting locomotion morphologies, and that such designs can
transfer to the real world (Fig. 4) [13]. However, this work
did not take advantage of the NEAT algorithm, with its
historical markings, speciation, crossover, and complexifica-
tion over time - which have been shown to greatly improve
the search process [33]. Additionally, these preliminary re-
sults consisted of only three trials per treatment. Here we
conduct a more in-depth exploration of the capabilities of
CPPNs when evolving soft robots in VoxCad.

Figure 4: A time-series example of a fabricated soft
robot, which actuates with cyclic 20% volumetric
actuation in a pressure chamber [13]. This proof-of-
concept shows that evolved, soft-bodied robots can
be physically realized. Current work is investigating
soft robot actuation outside of a pressure chamber.



Figure 5: A CPPN is iteratively queried for each
voxel within a bounding area and produces output
values as a function of the coordinates of that voxel.
These outputs determine the presence of voxels and
their material properties to specify a soft robot.

3. METHODS

3.1 CPPN-NEAT
CPPN-NEAT has been repeatedly described in detail [31,

9, 7, 10], so we only briefly summarize it here. A compo-
sitional pattern-producing network (CPPN) is similar to a
neural network, but its nodes contain multiple math func-
tions (in this paper: sine, sigmoid, Gaussian, and linear).
CPPNs evolve according to the NEAT algorithm [31]. The
CPPN produces geometric output patterns that are built up
from the functions of these nodes. Because the nodes have
regular mathematical functions, the output patterns tend to
be regular (e.g. a Gaussian function can create symmetry
and a sine function can create repetition). In this paper,
each voxel has an x, y, and z coordinate that is input into
the network, along with the voxel’s distance from center (d).
One output of the network specifies whether any material is
present, while the maximum value of the 4 remaining out-
put nodes (each representing an individual material) spec-
ifies the type of material present at that location (Fig. 5).
This method of separating the presence of a phenotypic com-
ponent and its parameters into separate CPPN outputs has
been shown to improve performance [36]. Robots can be
produced at any desired resolution. If there are multiple dis-
connected patches, only the most central patch is considered
when producing the robot morphology.

3.2 VoxCAD
Fitness evaluations are performed in the VoxCAD soft-

body simulator, which is described in detail in Hiller and
Lipson 2012 [14]. The simulator e�ciently models the stat-
ics, dynamics, and non-linear deformation of heterogeneous
soft bodies. It also provides support for volumetric actuation
of individual voxels (analogous to expanding and contract-
ing muscles) or passive materials of varying sti↵ness (much
like soft support tissue or rigid bone). For visualization, we
display each voxel, although a smooth surface mesh could
be added via the Marching Cubes algorithm [23, 7].

3.2.1 MATERIALS
Following [12], there are two types of voxels: those that

expand and contract at a pre-specified frequency, and pas-
sive voxels with no intrinsic actuation, which are either soft
or hard. We expand upon [12] to include multiple phases of
actuation. Unless otherwise noted, four materials are used:
Green voxels undergo periodic volumetric actuations of 20%.
Light blue voxels are soft and passive, having no intrinsic
actuation, with their deformation caused solely by nearby
voxels. Red voxels behave similarly to green ones, but with
counter-phase actuations. Dark blue voxels are also passive,
but are more sti↵ and resistant to deformation than light
blue voxels. In treatments with less than 4 materials, voxels
are added in the order above (e.g. two material treatments
consist of green and light blue voxels).

3.3 GAlib
The direct encoding is from GAlib–fully described in [37]–

a popular o↵-the-shelf genetic algorithm library from MIT.
In the direct encoding genome, each voxel has its own inde-
pendent values representing its presence and material out-
puts. The first value is binary, indicating whether a voxel
at that position exists. If the voxel exists, the highest of
the material property values determines the type of voxel.
Thus, a 10⇥ 10⇥ 10 (“103”) voxel soft robot with 4 possible
materials would have a genome size of 103⇥5 = 5000 values.

3.4 Experimental Details
Treatments consist of 35 runs, each with a population size

of 30, evolved for 1000 generations. Unless otherwise noted,
fitness is the di↵erence in the center of mass of the soft robot
between initialization and the end of 10 actuation cycles. If
any fitness penalties are assessed, they consist of multiplying
the above fitness metric by: 1 � penalty metric

maximum penalty metric

. For
example, if the penalty metric is the number of voxels, an
organism with 400 non-empty voxels out of a possible 1000
would have its displacement multiplied by 1� 400

1000

= 0.6 to
produce its final fitness value. Other CPPN-NEAT param-
eters are the same as in Clune and Lipson 2011 [7].

4. RESULTS
Quantitative and qualitative analyses reveal that evolu-

tion in this system is able to produce e↵ective and inter-
esting locomoting soft robots at di↵erent voxel resolutions
and using di↵erent materials. We also discover that impos-
ing di↵erent environmental challenges in the form of penalty
functions provides an increased diversity of forms, suggest-
ing the capability to adapt to various selective pressures.

Videos of soft robot locomotion are available at http:

//tinyurl.com/EvolvingSoftRobots. So the reader may
verify our subjective, qualitative assessments, we have per-
manently archived all evolved organisms, data, source code,
and parameter settings at the Dryad Digital Repository.

4.1 Direct vs. Generative Encoding
The CPPN-NEAT generative encoding far outperforms

the direct encoding (Figure 8), which is consistent with pre-
vious findings [9, 6]. The most stark di↵erence is in the reg-
ularity of the voxel distributions (compare Figs. 1, 6, 12, 13
to Fig. 7). CPPN-NEAT soft robots consist of homogeneous
patches of materials akin to tissues (e.g. one large patch of
muscle, another patch of bone, etc.). The direct encoding,
on the other hand, seems to randomly assign a material to
each voxel. These homogeneous tissue structures are benefi-
cial because similar types of voxels can work in a coordinated



Figure 6: CPPN-NEAT-encoded soft robots can scale to any resolution. Pictured here are soft robots sampled
at voxel resolutions of 5⇥ 5⇥ 5 (left), 10⇥ 10⇥ 10 (center), and 20⇥ 20⇥ 20 (right).

fashion to achieve the locomotion objective. For example, all
the voxels in one large section of green voxels will expand at
the same time, functioning as muscle tissue. This global co-
ordination leads to jumping, bounding, stepping, and many
other behaviors. In the direct encoding, each voxel works
independently from–and often at odds with–its neighboring
voxels, preventing coordinated behaviors. Instead, final or-
ganisms appear visually similar to those at initialization, and
performance barely improves across generations (Figure 8).

Another reason for the success of the CPPN-NEAT encod-
ing is one of the key properties of the NEAT algorithm: it
starts with CPPN networks that produce simple geometric
voxel patterns and complexifies those patterns over time [31].

4.2 Penalty Functions
To explore performance under di↵erent selective or envi-

ronmental pressures, we tested four di↵erent penalty regimes.
All four require the soft robot to move as far as possible,
but have di↵erent restrictions. In one environment, the soft
robots are penalized for their number of voxels, similar to
an animal having to work harder to carry more weight. In
another, the soft robots are penalized for their amount of
actuatable material, analogous to the cost of expending en-
ergy to contract muscles. In a third treatment, a penalty
is assessed for the number of connections (adjoining faces
between voxels), akin to animals that live in warm environ-
ments and overheat if their surface area is small in com-
parison to their volume. Finally, there is also the baseline
treatment in which no penalties are assessed.

While a cost for actuated voxels does perform significantly
worse than a setup with no cost (p = 1.9⇥ 10�5 comparing
final fitness values), all treatments tend to perform similarly
over evolutionary time (Fig. 9). This rough equivalence sug-
gests that the system has the ability to adapt to di↵erent
cost requirements without major reductions in performance.
However, drastically di↵erent types of body-plans and be-
haviors evolved for the di↵erent fitness functions. There
are di↵erences in the proportions of each material found in
evolved organisms, indicating that evolution utilizes di↵er-
ent material distributions to fine tune morphologies to var-
ious environments (Fig. 10). For example, when no penalty
cost is assessed, more voxels are present (p < 2 ⇥ 10�13).
When there is a cost for the number of actuated voxels, but
not for support tissue, evolution uses more of these inert
support materials (p < 0.02).

More revealing are the di↵erences in behaviors. Fig. 11

categorizes locomotion strategies into several broad classes,
and shows that di↵erent task requirements favor di↵erent
classes of these behaviors. To limit subjectivity in the cat-
egorization process, we made clear category definitions, as
is common in observational biology, and provide an online
archive of all organisms for reader evaluation (see Sec. 4).

Fig. 12 displays the common locomotion strategies and
Fig. 11 shows how frequently they evolved. They are de-
scribed in order of appearance in Fig. 12. The L-Walker is
named after the“L” shape its rectangular body forms, and is
distinguished by its blocky form and hinge-like pivot point
in the bend of the L. The Incher is named after its inchworm
like behavior, in which it pulls its back leg up to its front
legs by arching its back, then stretches out to flatten itself
and reach its front legs forward. Its morphology is distin-
guished by its sharp spine and diagonal separation between
actuatable materials. The Push-Pull is a fairly wide class of
behaviors and is tied together by the soft robot’s powerful
push with its (often large) hind leg to propel itself forward,
which is usually coupled with a twisting or tipping of its
front limb/head to pull itself forward between pushes. The
head shape and thinner neck region are surprisingly common
features. Next, the Jitter (or Bouncer) moves by bouncing
its (often large) back section up and down, which pushes
the creature forward. It is distinguished by its long body
and is often composed mainly of a single actuatable mate-

Figure 7: A representative example of a soft robot
evolved with a direct encoding. Note the lack of reg-
ularity and organization: there are few contiguous,
homogeneous patches of one type of voxel. Instead,
the organism appears to be composed of randomly
distributed voxels . The resolution is the default 103.



Figure 8: The best individuals from 35 independent
runs with a direct or generative encoding. Note how
the generative encoding sees large improvements
early in evolution, while it is exploring new loco-
motion types. It then settles on specific types and
gradually improves coordination, timing, etc., to ex-
ploit a given strategy. The direct encoding is unable
to produce globally coordinated behavior to develop
new locomotion strategies, resulting in very minor
improvements as it exploits its initial random forms.
Here, and in all figures, thick lines are medians ±95%
bootstrapped confidence intervals.

rial. The Jumper is similar in that it is often comprised of
a single actuatable material, but locomotes in an upright
position, springing up into the air and using its weight to
angle its jumping and falling in a controlled fashion to move
forward. The Wings is distinguished by its unique vertical
axis of rotation. It brings its arms (or wings) in front of
it, then pushes them down and out to the sides, propelling
its body forward with each flapping-like motion. Fig. 13
demonstrates other, less-common behaviors that evolved.

These example locomotion strategies display the system’s
ability to produce a diverse set of morphologies and behav-
iors, which likely stems from its access to multiple types of
materials. Our results suggest that with even more mate-
rials, computational evolution could produce even more so-
phisticated morphologies and behaviors. Note that di↵erent
behaviors show up more frequently for di↵erent task settings
(Fig. 11), suggesting the ability of the system to fine tune
to adapt to di↵erent selective pressures.

4.3 Material Types
To meet its full potential, this system must scale to arbi-

trarily large numbers of materials and resolutions. We first
explore its ability to compose soft robots out of a range of
materials by separately evolving soft robots with increasing
numbers of materials (in the order outlined in Sec. 3.2.1).
Adding a second, and then a third, material significantly
improved performance (Fig. 14, p < 2 ⇥ 10�6), and adding
a further hard, inert material did not significantly hurt per-

Figure 9: Performance is mostly una↵ected by dif-
ferent selection pressures (i.e. fitness functions).

Figure 10: The amount of each material that evolved
for di↵erent cost functions, revealing the system’s
ability to adapt material distributions to di↵erent
environments. For example, without a cost, evo-
lution used more voxels to produce actuation (p <

2⇥10�13). With a cost for actuated voxels, evolution
tends to use more inert support tissue (p < 0.02).

formance (Fig. 14, p = 0.68). This improved performance
suggests that CPPN-NEAT is capable of taking advantage of
the increase in morphological and behavioral options. This
result is interesting, as one might have expected a drop in
performance associated with the need to search in a higher
dimensional space and coordinate more materials.

4.4 Resolution
This system also is capable of scaling to higher resolu-



Figure 11: Common behaviors evolved under di↵er-
ent cost functions, summed across all runs. These
behaviors are described in Sec. 4.2 and visualized in
Fig. 12. Some behaviors occur more frequently un-
der certain selective regimes. For example, the L-
Walker is more common without a voxel cost, while
Jitter, Jumper, and Wings do not evolve in any of
the no cost runs.

tion renderings of soft robots, involving increasing numbers
of voxels. Fig. 6 shows example morphologies evolved at
each resolution. The generative encoding tended to per-
form roughly the same regardless of resolution, although the
computational expense of simulating large numbers of voxels
prevented a rigorous investigation of the e↵ect of resolution
on performance. Faster computers will enable such research
and the evolution of higher-resolution soft robots.

5. DISCUSSION
The results show that life-like, complex, interesting mor-

phologies and behaviors are possible when we expand the
design space of evolutionary robotics to include soft mate-
rials that behave similarly to organic tissue or muscle, and
search that design space with a powerful generative encod-
ing like CPPN-NEAT. Our preliminary experiments suggest
that soft robotics at the voxel resolution will someday pro-
vide complex and breathtaking demonstrations of lifelike ar-
tificial forms. Soft robotics will also showcase the ability of
evolutionary design because human intuitions and engineer-
ing fare poorly in such entangled, non-linear design spaces.

We challenged multiple scientists to design fast, locomot-
ing soft robots by hand, using the same resolution and ma-
terials. While the sample size is not su�cient to report
hard data, all participants (both those with and without en-
gineering backgrounds) were unable to produce organisms
that scored higher than the evolved creatures. Participants
noted the surprising di�culty of producing e�cient walk-
ers with these four materials. This preliminary experiment
supports the claim that systems like the CPPN-NEAT gen-
erative encoding will increasingly highlight the e↵ectiveness
of automated design relative to a human designer.

Figure 12: Time series of common soft robot be-
haviors as they move from left to right across the
image. From top to bottom, we refer to them as
L-Walker, Incher, Push-Pull, Jitter, Jumper, and
Wings. Fig. 11 reports how frequently they evolved.

Figure 13: Time series of other evolved strategies.
(top) Opposite leg stepping creates a traditional an-
imal walk or trot. (middle) A trunk-like appendage
on the front of the robot helps to pull it forward.
(bottom) A trot, quite reminiscent of a galloping
horse, demonstrates the inclusion of sti↵ material
to create bone-like support in longer appendages.

This work shows that the presence of soft materials alone
is not su�cient to provide interesting and e�cient locomo-
tion, as soft robots created from the direct encoding per-
formed poorly. Our results are consistent with work evolving
rigid-body robots that shows that generative encodings out-
perform direct encodings for evolutionary robotics [17, 19,
9, 6]. Unfortunately, there have been few attempts to evolve



Figure 14: The number of materials also a↵ects per-
formance. With only one, only simple behaviors
like Jumping or Bouncing are possible, so perfor-
mance peaks early and fails to discover new gaits
over time. Upon adding a second material, more
complex jumping and L-Walker behavior develops.
When a second actuatable material is added, most
behavior strategies from Fig. 12 become possible.
Adding a sti↵ support material broadens the range
of possible gaits, but is only rarely taken advantage
of (such as in the bottom gallop of Fig. 13) and
thus has a minimal impact on overall performance.
These observational assessments may be verified, as
all evolved organisms are available online (Sec. 4)

robot morphologies with CPPN-NEAT [2], and there is no
consensus in the field of a proper measurement of “complex-
ity”, “interestingness”, or“natural”appearance, so we cannot
directly compare our soft robots to their rigid-body counter-
parts. However, we hope that the reader will agree about the
potential of evolved soft robots upon viewing the creatures
in action [http://tinyurl.com/EvolvingSoftRobots].

6. FUTURE WORK
The ability to evolve complex and intricate forms lends

itself naturally to other questions in the field. Auerbach
and Bongard have explored the relationship between envi-
ronment and morphology with rigid robots in highly regular
environments [4]. Because our system allows more flexibility
in robot morphology and behavior, it may shed additional,
or di↵erent, light on the relationship between morphology,
behavior, and the environment. Preliminary results demon-
strate the ability of this system to produce morphologies
well suited for obstacles in their environments (Fig. 15).

While our research produced an impressive array of di-
verse forms, it did use a target-based fitness objective, which
can hinder search [38]. Switching to modern techniques for
explicitly generating diversity, such as the MOLE algorithm
by Mouret and Clune [24, 8] or algorithms by Lehman and
Stanley [21], has the potential to create an incredibly com-
plex and diverse set of morphologies and behaviors.

Figure 15: An example of a soft robot that has
evolved “teeth” to hook onto the obstacle rings in
its environment and propel itself across them.

Additionally, we are currently pursuing methods to mini-
mize the need for expensive simulations and to evolve spe-
cific material properties instead of having a predefined palette
of materials. These avenues are expected to allow increased
complexity and diversity in future studies.

The HyperNEAT algorithm [32], which utilizes CPPNs,
has been shown to be e↵ective for evolving artificial neural
network controllers for robots [9, 20, 6]. The same encoding
from this work could thus co-evolve robot controllers and
soft robot morphologies. Bongard and Pfeifer have argued
that such body-brain co-evolution is critical toward progress
in evolutionary robotics and artificial intelligence [26].

Soft robots have shown promise in multiple areas of robotics,
such as gripping [15] or human-robot interaction [28]. The
scale-invariant encoding and soft actuation from this work
has potential in these other areas of soft robotics as well.

In order to compare di↵erent approaches, the field would
benefit from general, accepted definitions and quantitative
measures of complexity, impressiveness, and naturalness. Such
metrics will enable more quantitative analyses in future stud-
ies like this one.

7. CONCLUSION
In this work we investigate the di�cult-to-address ques-

tion of why we as a field have failed to substantially improve
upon the work of Karl Sims nearly two decades ago. We
show that combining a powerful generative encoding based
on principles of developmental biology with soft, biologically-
inspired materials produces a diverse array of interesting
morphologies and behaviors. The evolved organisms are
qualitatively di↵erent from those evolved in previous re-
search with more traditional rigid materials and either di-
rect, or overly regular, encodings. The CPPN-NEAT en-
coding produces complex, life-like organisms with properties
seen in natural organisms, such as symmetry and repetition,
with and without variation. Further, it adapts to increased
resolutions, numbers of available materials, and di↵erent en-
vironmental pressures by tailoring designs to di↵erent selec-
tive pressures without substantial performance degradation.
Our results suggest that investigating soft robotics and mod-
ern generative encodings may o↵er a path towards eventually
producing the next generation of impressive, computation-



ally evolved creatures to fill artificial worlds and showcase
the power of evolutionary algorithms.
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